

7/21/2016

Types of laser commonly used in MALDI: BRUKER

Nitrogen laser: pro: well structured energy profile contra: slow (maximum 60Hz)

Nd:YAG laser: pro: fast (up to >1000Hz) contra: Gaussian energy profile (non-structured)

Smartbeam/Smartbeam II (modified Nd:YAG laser): pro: fast (up to 2000Hz) pro: well structured energy profile

Reference: A. Holle, A. Haase, M. Kayser, J. Höhndorf, *Journal of Mass Spectrometry*, 41, 705-716 (2006) 13 Bruker Daltonics

Commonly used MALDI matrix substances:					
Peptides:	4-Hydroxy-a-cyanocinnamic acid (HCCA)				
Proteins:	2,5-Dihydroxyacetophenone (DHAP) Sinapinic acid (SA) 2,5-Dihydroxybenzoic acid (DHB)				
Glycans:	2,5-Dihydroxybenzoic acid (DHB)				
Nucleic acids:	3-Hydroxypicolinic acid (HPA) 2,4,6-Trihydroxyacetophenone (THAP)				
Why different matrices for different types of sample?					
It's all about					
 the amount of energy needed to ionize a particular sample compound (individual matrices show specific "energy threshold") the stability of a particular sample compound (too, bet" matrix may load to an desired fragmentation of sample compounde). 					
(coo where matrix may read to non-desired magnetization of sample compounds)					
14	Bruker Daltonics				

How can I	How can Lunderstand how DIE works?					
PIE stands for P ulsec	PIE stands for P ulsed I on E xtraction. This means that the ions are not extracted as \checkmark					
classically in a contin	uous e	xtraction	i field, bu	it are creat	ted in a zero extraction field,	
and then extracted a	fter a o	certain de	elay time	in a pulse	d fashion.	
This technique has tw	vo advi	antages:	1. The p	rocess is s	ofter, as the ions are not	
accelerated through	the der	nse plum	e of mati	rix molecul	es right after desorption, and 2.	
by choosing the right	paran	neters a f	time focu	ising can b	e achieved. This together	
results in better reso	lution a	and bette	er sensiti	vitv. when	using the correct parameters.	
On the other hand, w	rona r	aramete	rs can de	ecrease res	solution and sensitivity. Therefore	
the acquisition softwa	are are	ater that	n 3 0 allo	ws for sav	ing complete parameter sets. It	
is recommended to a	norsto	the evet		naramoto	r sets. Normally during	
installation some role	is recommended to operate the system using parameter sets. Normally during					
Installation some rele	evant s	ets nave	been sto	ored on you	ir system.	
Method File Name	IS1	IS2	Lens	Delay		
RP_3147	25	21.70	9.0	70ns		
RP_6000	25	21.65	9.0	130ns		
RP_8000	25	21.70	9.0	170ns		
*1						
Method File Name	IS1	IS2	Lens	Delay		
RP_1000	19	16.90	9.0	60ns		
RP_2000	19	16.85	9.0	80ns		
RP_3000	19	16.90	9.0	210ns		
RP_6000	19	16.60	9.0	230ns	 Example only, 	
	19	16.35	9.0	360ns		
RP_17K	19	16.15	9.0	420ns		
		\square		$\overline{}$	Bruker Daltonics	

MALDI-TOF BRUKER Linear vs. reflector mode FAQ: If MALDI-TOF performed in reflector mode gives so much better resolution - why then use linear mode at all??? **Answer:** Linear mode is used whenever analytes are not stable enough to survive the energetic stress which is inherent to passing the reflector (ions are deccelerated/re-accelerated in the reflector by a high kV electric field within nanoseconds!!!). Especially larger sized molecules, e.g. intact proteins, show limited stability when passing the reflector field, and may undergo serious fragmentation, which results in either badly resolved spectra (peak fronting due to non-resolved fragments) and/or drastic loss in sensitivity (low mass fragments will miss the reflector detector). **Bruker Daltonics** 29

MALDI-TO	F		BRUKER		
Where do these isotope peaks originate from?					
Isotop 1-H 2-H (De 12-C 13-C 14-N 15-N 16-O 19-F 23-Na 31-P 32-S 34-S 35-Cl 37-Cl 39-K 79-Br 1 P-Br	e Mass 1.007825 euterium) 2.014000 12.00000 13.00336 14.00307 15.00011 15.99491 17.99916 18.99840 22.98977 30.97376 31.97207 33.96787 34.96885 36.96590 38.96371 78.91834 20.020	[%] Abundance 99.985 0.015 98.90 1.10 99.63 0.37 99.76 0.20 100 100 100 100 100 95.03 4.22 76.77 31.98 93.26 50.69 40.21			
Elements that are found in nature in form of only one single isotope, are					
called monoisotopic	elements.		Bruker Daltonics		

7/21/2016

Compass for Flex series 1.3 c	or higher:			
	Min. number of calibrant peaks	Calibration polynom to be used		
external calibration:	2 4 6	linear quadratic cubic enhanced		
internal re-calibration: (external pre-calibration: quadratic)	1 4 6	linear correction quadratic cubic enhanced		
internal re-calibration: (external pre-calibration: cubic enhanced)	1 4	linear correction cubic enhanced		
Note: For optimum mass accuracy, calibrants in general have to cover the entire mass range that is to be calibrated. Extrapolation of calibration functions will always have a negative effect on the resulting mass accuracy.				

Bruker Corporation Today Life Science Analysis (LSA)				
Bruker AXS ——— •	Elemental Analysis			
	 X-ray Diffraction X-ray Crystallography X-ray Fluorescence 	EDS MicroanalysisOptical SpectroscopyCombustion Analysis		
Bruker BioSpin —— 🔴	Magnetic Resonance			
	• NMR • MRI	• EPR		
Bruker Daltonics — •	Mass Spectrometry			
	 LC MALDI-TOF(/TOF) LC Ion Trap MSⁿ GC and GC-(QqQ) MS 	 LC ESI-(Qq)-TOF, FTMS IMS ICP-MS 		
Bruker Optics —— •	Vibrational Spectroscopy			
	FT-IRFT-NIR	RamanTD-NMR		

